[image: image2.png]

December 1, 2003

File Name: bsi-java-setup120103.doc
Setup and Process Guide for Conformance Testing of Government Smart Card Systems

Basic Service Interface – Java Binding*
Version 1

Eric Dalci (edalci@nist.gov)

Elizabeth Fong (efong@nist.gov)

Alan Goldfine (goldfine@nist.gov)

INTRODUCTION

There are three conformance test suites for the Government Smart Card Interoperability Specification (GSC-IS) v2.1, as contained in NISTIR 6887 – 2003 Edition:

· Basic Service Interface, Java Binding test suite

· Basic Service Interface, C Binding test suite

· Card Edge Interface test suite.

This document presents a description of the operational aspects of the Java Binding test suite, including the contents of the conformance testing package and a step-by-step procedure for testing candidate GSC-IS implementations.

1. RELATED DOCUMENTS

This document is part of the series of Government Smart Card Conformance Test Suite documents.

 The general concepts, components, and issues related to establishing and administering a conformance testing and certification program for the Government Smart Card program are contained in the document:

· Elizabeth Fong, "Conformance Test Framework for Government Smart Card, A white paper", June 11, 2002.
The architecture and general approach for the conformance testing of the Basic Service Interface are described in the document:

· Elizabeth Fong, “Conformance Testing Architecture for the Basic Service Interface of the Government Smart Card Specification” October 23, 2002 (revised paper dated, <latest>).

 The Java binding test assertions, in narrative form, can be found in the document:

· Alan Goldfine, “Government Smart Card Interoperability Specification v2.1 (NISTIR 6887 – 2003 Edition) Basic Services Interface Java Binding Conformance Test Assertions”, <latest>.
The Java binding test scenarios, in narrative form, are contained in the document:

· Alan Goldfine, “Government Smart Card Interoperability Specification v2.1 (NISTIR 6887 – 2003 Edition) Basic Services Interface Java Binding Conformance Test Instantiation, Verification, and Reporting Scenarios, <latest>.
2. CONFORMANCE TEST SUITE PACKAGE

The BSI Java Binding test suite is composed of the following elements:

· Test assertions, in narrative form

· Test scenarios, in narrative form

· Test cases (scenarios translated into XML)

· JDOM Java API (XML parser)

· Test executer program

· Graphical User Interface

2.1 Test assertions, in narrative form:

These specify, in general terms, the items that will be tested for each of the 23 BSI functions. The Java binding test assertions appear in <www.smartcard.nist.gov>

2.2 Test scenarios, in narrative form

These describe the procedures used for testing each test assertion. The Java binding test scenarios appear in <www.smartcard.nist.gov>

2.3 Test cases (the scenarios written in XML)

The test scenarios are translated into a set of 23 XML documents, and a corresponding Document Type Definition (DTD). Each XML document encodes the set of test scenarios, with their descriptions and parameters, for a given Java BSI function. The DTD file defines the structure of the XML documents, and can be used by an XML parser to ensure that the XML files are well typed. The Java binding test cases in XML appear in <www.smartcard.nist.gov>

The File names for these documents are as follows:

jsdtd.dtd
(DTD File)

JSgscBsiUtilAcquireContext.xml

JSgscBsiUtilConnect.xml

JSgscBsiUtilDisconnect.xml

JSgscBsiUtilBeginTransaction.xml

JSgscBsiUtilEndTransaction.xml

JSgscBsiUtilGetVersion.xml

JSgscBsiUtilGetCardProperties.xml

JSgscBsiUtilGetCardStatus.xml

JSgscBsiUtilGetExtendedErrorText.xml

JSgscBsiUtilGetReaderList.xml

JSgscBsiUtilPassthru.xml

JSgscBsiUtilReleaseContext.xml

JSgscBsiGcDataCreate.xml

JSgscBsiGcDataDelete.xml

JSgscBsiGcGetContainerProperties.xml

JSgscBsiGcReadTagList.xml

JSgscBsiGcReadValue.xml

JSgscBsiGcUpdateValue.xml

JSgscBsiGetChallenge.xml

JSgscBsiSkiInternalAuthenticate.xml

JSgscBsiPkiCompute.xml

JSgscBsiPkiGetCertificate.xml

JSgscBsiGetCryptoProperties.xml

2.4 JDOM Java API (XML parser)

The JDOM API, which is a Java API for reading and parsing XML code, is used to manipulate the 23 XML files.

2.5 Test Executer Program

The tester program is composed of a set of Java classes that manage the testing process, using the XML files as input, and producing HTML results files as output.

2.6 Graphical User Interface

The test operator uses a Graphical User Interface (GUI) written in Java. Through the GUI, the operator runs and monitors the entire test process.

3. HARDWARE REQUIREMENTS

To conduct conformance testing for the BSI Java binding, the system requirements are:

· a PC with a minimum Pentium II 450 MHz processor

· at least 250 MB of RAM

· at least 1 GB available hard-drive space.

4. SOFTWARE REQUIREMENTS

The required software to run the BSI Java binding Conformance Test Suite is:

· Windows 2000 Professional or Windows XP operating system.

· Java 2 SDK Standard Edition (J2SE) version 1.4 or higher (http://java.sun.com).

· an XML editing tool.

· an internet browser (e.g., Internet Explorer (5.0 or above), Netscape (6.0 or higher)).

· JDOM software (version 9 beta) (http://jdom.org).

JDOM is a Java API for manipulating XML. The following packages are included in the beta version of JDOM 9:

Packages:

-org.jdom

-org.jdom.adapters

-org.jdom.filter

-org.jdom.input

-org.jdom.output

-org.jdom.transform

-org.jdom.xpath

5. SETTING UP THE SOFTWARE

JDOM, the executor program, and the GUI are written in Java and need the Java platform. Set up the JDOM and J2SE as follows:

5.1 Download J2SE (www.java.sun.com) and JDOM (version 9 Beta) (http://jdom.org)

5.2 Install J2SE on your hard drive.

5.3 Check that your environment variable JAVA_HOME is correct. It refers to the path of the directory where JAVA 2 SDK is set up (e.g., C:\j2sdk1.4.x). The following is the File System of your JAVA_HOME path:

\J2sdk1.4.X (where x = version number)

\bin

\demo

\include

\jre

lib

· To check the value of the JAVA_HOME variable, use the following DOS command:

In a DOS shell:

echo %JAVA_HOME%

(1)

This should return something like “C:\j2sdk1.4.X”.
· To set up the JAVA_HOME environment variable, use the following DOS command:

In a DOS shell:

set JAVA_HOME=C:\j2sdk1.4.0

(2)

Then check this by using command (1)

5.4 Create a folder called “JDOM” and unzip the JDOM compressed files into it.

5.5 Build the file named “JDOM.jar” as instructed in the README file provided with JDOM. The file system of the JDOM package is as follows:

JDOM\jdom-b9

\build

\etc

\lib

\package

\samples

\src

Locate the JDOM “JAR files” which are located in the folder “JDOM\jdom-b9\lib”. A README file located in this directory gives a description of the JAR files included with JDOM. The following is an extract of that README file:

File under jdom-b9\lib :

ant.jar :

Used for building JDOM. The build scripts include it automatically. Do not include it in your runtime path.

xerces.jar , xml-apis.jar :

The popular Xerces XML parser. Place these two JARs at the head of your classpath and Xerces will be used as your parser.

xalan.jar:

An XSLT processor. Included in J2SE 1.4+. Put this in your classpath.
jaxen-core.jar, jaxen-jdom.jar, saxpath.jar :

These JARs support the XPath feature of JDOM. Put these in your classpath if you're using XPath.

File under jdom-b9\build:

jdom.jar

This last JAR file named “jdom.jar” is created during the build process and put in the "build" directory and should be added to the classpath as well.

5.6 To use JDOM API within the Java Runtime Environment and Compiler, copy the JDOM “JAR files” (xerces.jar, xml-apis.jar, xalan.jar, jaxen-core.jar, jaxen-jdom.jar, saxpath.jar, jdom.jar) to the Java Platform extension directory, which is “JAVA_HOME\jre\lib\ext” (e.g., C:\j2sdk1.4.0\jre\lib\ext).

6. TROUBLESHOOTING

· Make sure that the JAVA SDK is at least version 1.4. JDOM does not work with JAVA SDK version 1.1.

· When executing the tests, there might be a runtime error if the Java interpreter cannot locate the JDOM JARs files. This may happen if the environment variable JAVA_HOME is not correctly set up.

7. SETTING UP THE TEST SUITE
The test suite software package for the BSI Java Binding is delivered in a zip file called “GSCIS_Java_Binding.zip”

The zip file includes :

· A set of Java classes representing the Graphical User Interface (name starting with “GUI”).
· The JAR file named “ testgscis.jar”, which contains

· the “GSC-IS” tester package which executes the GUI, reads the input files and outputs the results

· the “constants.java” file that contains the variable names and constant values that the test operator may have to edit and configure.

· A folder called “XMLfiles” containing the DTD file and the 23 XML files.

· A folder called “BSIJAVAHTML” which should be empty initially, but will contain the HTML test report after each test execution.

The user may also place the entire package in a JAR file and run the GUI from a DOS script.

Note: The structure of the package and the names of the files may change pending future updates and improvements.

8. CUSTOMIZING THE PARAMETERS
To properly execute the Java Binding BSI test scenarios, some environment variables and constants need to be initialized. To customize these values, do the following:

· In the GSC-IS package, find the file called “constants.java” (located in the folder “/gov/gsc/interface”)

· Open the file “constants.java” with a text editor and edit the values in the “CUSTOMIZATION” section

· Review the values in “constants.jar” using Javadoc.

9. SETTING UP THE IMPLEMENTATION UNDER TEST (IUT)

The IUT should, for its package, class and interface names, follow the naming conventions specified in Appendix F of the GSC-IS 2.1. The tester package will only recognize the specified naming conventions. Implementations must include implementation of the Java BSI as JAR file(s).

See Appendix F of the GSC-IS for more details.

 10. TEST CASES
Each BSI method is tested individually. Each test case is numbered according to the corresponding scenario in the “Conformance Test Instantiation, Verification, and Reporting Scenarios” document. Each test case is designed to cause the IUT to process certain inputs. The output of the process may be valid or invalid. The test cases consist of a possible pre-condition method call, the actual instantiation method call, and a possible verification call. The pre-condition and verification calls are other BSI commands which, if present, work in conjunction with the actual command tested. For example, the “gscBsiGcDataCreate” test cases consist of a pre-call to “gscBsiUtilAcquireContext” to ensure that a valid session is established prior to the actual testing, the actual “gscBsiGcDataCreate” call, and finally the verification call (“gscBsiGcReadValue”) which verifies whether or not the given data is created correctly.

Some test cases do not have pre-condition calls. Some do not have explicit verification calls. Among the latter are cases in which a visual inspection is performed to determine whether the test passed or failed.

Some test cases require the operator to perform manual tasks, e.g., to remove the connected card or to insert a bad card in the reader. These tests will have a pause built-in to allow the operator to perform the required task.

11. EXECUTION PROCEDURE
The procedure to follow for testing the Java Binding of the BSI is as follows:

1. Create a TEST folder and unzip the BSI Java Binding Tester package in TEST.

2. Read the README.txt file for detailed information.

3. The typical execution will consist of the following:

a. At the DOS prompt, go to the TEST directory.

Type: Java GUIBSI (This will launch the GUI).

b. Choose the type of test (e.g., BSI Java Binding Test) from the master menu.

c. Choose the BSI command you wish to test from the list provided.

The test execution script will appear in the DOS window.

d. Examine the test script to see that the test ended properly and the card disconnected.

e. To view or print the test results, use an Internet browser to view the HTML results file located in the BSIJAVA HTML folder in the TEST directory.

12. TEST OUTPUT REPORTS
Use Internet Explorer or the Netscape browser to visualize the generated HTML file. The HTML file report appears as follows:

[image: image1.png]2 Conformance Test Suite Report

| Fie E vew favrtss ook b

rosoft Internet Explorer

=18l x|

| epack - > - & | @search GlFavores @iveda 8 | B+ & Elek:)
| acress [Ci\G5CIS Novenber2003 Javal GUIGSCIHTHL st J5gscBsiGeDat DeeteSEQ il =l @
ks Elcooge 7]
Nasonct o o
Sndars o ety

- GSC-IS Conformance testing suite

Java Binding - Sequenced call

- gscBsiGeDataDelete -

Assertion : US14.1

> The Card is connected with handle [hCard1400 = 1536882163]

The method is tested using valid paremeters.

Testeasoma: USia1FRE
Tost tpe description: o se tart stat by caling gocBsIUHLA oquireConter (8Card, AID, stccthvibenticator
Called method : gs<BoilIAcouissConter(goodhCard, constants goodAID, constants goodAuthenticatod
Card hondle: 1536883162
AID :0<A0000001 16DE00
‘Awhenticators list
. L. Authenticator#0
T8 o (int) AccessMethodTyp:
o (i) keylDOrReference
o (el Vb = 17345978
Eiome T T

Figure 1 – HTML Test Report

The test report contains a heading section that describes the test environment and the name and description of the tested method. This is followed by the output report for each test assertion corresponding to the given method. At the beginning of each test assertion output report, there is a test case number (here US14.1) and the purpose of the test case. This is followed by the pre-condition output box (if present) (here labeled US14.1 PRE), the instantiation output box (US14.1 INST), and finally the verification output box (US14.1 VER) (if present).

If the gscBsiUtilGetExtendedErrorText method is called for this test case, there is an output box (US14.1 TEXT) following the instantiation box.

For each test case, the method name with parameters, input values, and returned values, if applicable, are listed. The expected exception code(s) are listed followed by the results of the test. The test status field is colored green, red, or yellow according to whether the test passed, failed or was judged to be undetermined.

At the end of the test report, there is a summary table.

13. REMARKS

We welcome any feedback on the design and implementation of the Java binding conformance test suite. Please contact one of the authors of this document.

* DISCLAIMER

Certain proprietary systems mentioned in this report are examples of the technology only. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology.

The document represents work in progress. Modification and improvement to the document and the set up process can occur anytime without notice.

PAGE
1

[image: image2.png]